Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis.
نویسندگان
چکیده
The synthetic molecule sirtinol was shown previously to activate the auxin signal transduction pathway. Here we present a combination of genetic and chemical approaches to elucidate the action mechanisms of sirtinol in Arabidopsis. Analysis of sirtinol derivatives indicated that the "active moiety" of sirtinol is 2-hydroxy-1-naphthaldehyde (HNA), suggesting that sirtinol undergoes a series of transformations in Arabidopsis to generate HNA, which then is converted to 2-hydroxy-1-naphthoic acid (HNC), which activates auxin signaling. A key step in the activation of sirtinol is the conversion of HNA to HNC, which is likely catalyzed by an aldehyde oxidase. Mutations in any of the genes that are responsible for synthesizing the molybdopterin cofactor, an essential cofactor for aldehyde oxidases, led to resistance to sirtinol, probably caused by the compromised capacity of the mutants to convert HNA to HNC. We also showed that sirtinol and HNA could bypass the auxin polar transport system and that they were transported efficiently to aerial parts of seedlings, whereas HNC and 1-naphthoic acid were essentially not absorbed by Arabidopsis seedlings, suggesting that sirtinol and HNA are useful tools for auxin studies.
منابع مشابه
AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis.
Auxin affects many aspects of plant growth and development. We previously used chemical genetics to dissect auxin-signaling mechanisms and identified a small molecule, sirtinol, that constitutively activated auxin signaling (Y. Zhao et al. [2003], Science 301: 1107-1110). Here we describe the isolation, characterization, and cloning of an Arabidopsis mutant Atcand1-1 that emerged from a genetic...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملFunctional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants
Background: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element.Objectives: In this study, the overexpression effect of AtPAP26, one of the m...
متن کاملSirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components
In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ for...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 8 شماره
صفحات -
تاریخ انتشار 2005